Physics motivation	Pb-Pb collision	p-Pb collisions	pp collisions	Summary	backup
00	00	0000	0000000000	O	

Low-mass dimuon measurements in Pb-Pb, p-Pb and pp collisions in ALICE

Boris Teyssier

ALICE @ IPNL

October 14, 2015

Physics motivation	Pb-Pb collision	p-Pb collisions	pp collisions	Summary	backup

- 2 Pb-Pb collision
- 9 p-Pb collisions
- 4 pp collisions

Physics motivation ●0	Pb-Pb collision	p-Pb collisions 0000	pp collisions 0000000000	Summary O	backup

Low-Mass dilepton physics

Low mass dilepton production in AA collisions \rightarrow information on the hot and dense state of strongly-interacting matter produced in high energy nucleus nucleus collisions

- $\bullet\,$ Strangeness production via the φ meson
- Modification of ρ spectral function linked to the chiral symmetry restoration

Dileptons (dielectrons, dimuons) \rightarrow negligible final-state effects

Measurements in pp and p-A collisions : Soft particle production in Cold Nuclear Matter, needed reference for correctly interpreting heavy-ion observations.

Physics motivation	Pb-Pb collision	p-Pb collisions	pp collisions	Summary	backup
⊙●	00	0000	0000000000	0	

Two dilepton channels

- e⁺e⁻ in mid rapidity : |y| < 0.9 in the central barrel
- μ⁺μ⁻ in forward rapidity : -4.0 < y < -2.5 in the muon arm. channel of interest for this talk

Collision systems: Pb-Pb : $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ p-Pb : $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ pp : $\sqrt{s} = 2.76 - 7 - 13 \text{ TeV}$

B. Teyssier

• $\rho + \omega$ and ϕ signals can be extracted with respect to continuum (open charm/beauty and Dalitz decays). The large statistical uncertainties do not allow a precision study of the underlying continuum.

- $\phi/(\rho + \omega)$ increases with respect to pp collisions: ratio tends to saturate from semiperipheral to central collisions
- *R*_{AA} measured for the φ meson vs centrality: compatible with unity for peripheral collisions, suppressed going towards central collisions

Physics motivation	Pb-Pb collision	p-Pb collisions ●000	pp collisions 0000000000	Summary O	backup
$\sqrt{s} = 5.02 \text{ TeV}$					
p-Pb collisi	ons $\sqrt{s} = 5$	5.02 TeV :	Rapidity rai	nges in m	nuon

arm for p-Pb collisions

Asymmetric system

Center of mass not at rest in the laboratory

- backward range : −4.46 < y < −2.96
- forward range : 2.03 < y < 3.53
- common range : 2.96 < |y| < 3.53

Physics motivation	Pb-Pb collision	p-Pb collisions ○●○○	pp collisions 0000000000	Summary O	backup
$\sqrt{s} = 5.02 \text{ TeV}$					
p-Pb collisic	ons $\sqrt{s} = 5$	5.02 TeV :			

- Favorable trigger for low-mass dimuon analysis : good acceptance down to $\rho_{\rm T}=1~{\rm GeV/c}$
- \bullet systematics in φ meson extraction within 7%

7/19

Physics motivation	Pb-Pb collision	p-Pb collisions 00●0	pp collisions 0000000000	Summary 0	backup
$\sqrt{s} = 5.02 \text{ TeV}$					

p-Pb collisions $\sqrt{s} = 5.02 \text{ TeV}$

$\boldsymbol{\varphi}$ meson cross section:

 p_{T} dependence : compatible trends in forward and backward directions

y dependence : clear forward/backward asymmetry

HIJING and DPMJET predictions: large deviations with respect to data, especially for the cross section normalization in backward rapidity region and the description of rapidity dependence.

Physics motivation	Pb-Pb collision	p-Pb collisions 000●	pp collisions 0000000000	Summary O	backup
$\sqrt{s} = 5.02 \text{ TeV}$					

p-Pb collisions $\sqrt{s} = 5.02 \text{ TeV}$:

- R_{pPb} vs p_T for the ϕ meson at forward and backward rapidity: - larger for backward rapidity, but similar trends vs p_T
- *R*_{pPb} enhancement at backward rapidity. Cronin effect or flow ? Specific model predictions are needed

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions ●○○○○○○○○	Summary O	backup
$\sqrt{s} = 2.76 \text{ TeV}$					

pp collisions - $\sqrt{s} = 2.76 \text{ TeV}$

- Good agreement between data and MC for low mass dimuon spectrum
- p_{T} -differential cross section measured for ω and ϕ \rightarrow reference for Pb-Pb and p-Pb (interpolation at 5.02 TeV)

• ϕ meson : PYTHIA Perugia0 and Perugia11 tunes underestimate the data by patients a factor 2

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions ○●○○○○○○○○	Summary 0	backup
$\sqrt{s} = 7 { m TeV}$					
112.2	· – –				

- Good agreement between data and MC for low mass dimuon spectrum
- p_{T} -differential cross section measured for ω and ϕ \rightarrow reference for Pb-Pb and p-Pb (interpolation at 5.02 TeV)

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions ○○●○○○○○○○	Summary O	backup
$\sqrt{s} = 13 \text{ TeV}$					
nn collision	$15 - \sqrt{5} = 12$	3 TeV			

	0000	0000 0 00000	
$\sqrt{s}=13~{ m TeV}$ - data set			

$\sqrt{s} = 13 \text{ TeV}$: Raw mass spectrum

Using LHC15 (g, h & i) periods separately with criteria:

- LHC status: stable beams
- Triggered by CMUL7-B- and CMLL7-B-Downscaling factor is automatically read in OCDB and propagated through the analysis
- Number of triggered events larger than 100
- vertex event : $|v_z| < 10 \text{ cm}$

Final list of runs may slightly change according to the QA

iP

Physics motivation 00	Pb-Pb collision 00	p-Pb collisions 0000	pp collisions ○○○○●○○○○○	Summary 0	backup
$\sqrt{s}=13~{ m TeV}$ - data set					
$\sqrt{s} = 13 \text{ Ter}$	V:ratio of	raw mass s	pectrum		

Ratio of integrated statistics between LHC15g and h : 1.44

Ratio of integrated statistics between LHC15i and h : 3.78

Background estimation from data:

$$N_{bkg}^{dir}(M) = 2R(M)\sqrt{N_{++}^{dir}(M)\cdot N_{--}^{dir}(M)}$$

with R factor estimated with mixing

$$R(M) = \frac{N_{+-}^{\min}(M)}{2\sqrt{N_{++}^{\min}(M) \cdot N_{--}^{\min}(M)}}$$

Integral of $N_{bkg}^{dir}(M)$ [direct background] can be used to normalize the background estimated by the mixing procedure [mixed background]

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions	Summary O	backup
$\sqrt{s}=13~{ m TeV}$ - Signal					
$\sqrt{s} = 13 \text{ T}$	${ m eV}$: signal	mass spect	trum		

Physics motivation	Pb-Pb collision 00	p-Pb collisions 0000	pp collisions ○○○○○○●○○	Summary O	backup
$\sqrt{s} = 13 { m ~TeV}$ - Signal					

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions ○○○○○○○●○	Summary O	backup
$\sqrt{s}=13~{ m TeV}$ - Signal - ¢	meson				
$\sqrt{s} = 13 \text{ Te}^{3}$ (waiting for $\frac{1}{2}$	V:φ numt the full MC	per estimati cocktail)	on by simp	le fit	

Physics motivation	Pb-Pb collision	p-Pb collisions	pp collisions	Summary	backup
		0000	000000000		
$\sqrt{s}=13~{ m TeV}$ - Signal -	¢ meson				

- Full MC simulation
- Acceptance correction
- Measurement of p_T spectra for ϕ , $\omega + \rho$ and η

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions 0000000000	Summary •	backup
Summary					
Summary					

- Pb-Pb : For φ meson R_{AA}, suppression is observed with increasing centrality. Large statistical uncertainties do not allow a precision study of the underlying continuum.
- p-Pb : Forward/backward asymmetry observed for the ϕ meson, not well reproduced by models. R_{pPb} observed to be peaked around $p_T = 3 4 \text{ GeV/c}$ at backward rapidity. No prediction available from theoretical models
- pp:
- 2.76 7 TeV : Low mass dimuon spectrum successfully described by the hadronic cocktail baseline for Pb-Pb and p-Pb collisions.

20/19

Physics motivation	Pb-Pb collision 00	p-Pb collisions 0000	pp collisions 0000000000	Summary O	backup

Backup

ALI-PUB-94063

Physics motivation	Pb-Pb collision	p-Pb collisions	pp collisions	Summary	backup
00	00	0000	0000000000	O	
R factor					

Physics motivation	Pb-Pb collision	p-Pb collisions 0000	pp collisions 0000000000	Summary O	backup

LS corresponding to: $LS^{++} + LS^{--}$

The average difference between the (parametrized) ratio and the unity is taken as the relative error for the background subtraction. To be discussed ...

Physics motivation	Pb-Pb collision	p-Pb collisions	pp collisions	Summary	backup

Normalisation of mixing background shape

Normalizations are equalized in full mass range

